Most Barents Sea fish species are demersal (Dolgov et al., 2011); this fish community consists of about 70–90 regularly occurring species, which have been classified into zoogeographic groups. Approximately 25% are either Arctic or mainly Arctic species. The commercial species are boreal or mainly boreal species (Andriashev and Chernova, 1995), except for Greenland halibut (Reinhardtius hippoglossoides) that is classified as either Arcto-boreal (Mecklenburg et al., 2013) or mainly Arctic (Andriashev and Chernova, 1994).
Demersal fish
Distribution maps based on Barents Sea Ecosystem Survey (BESS) data for cod, haddock, long rough dab, Greenland halibut, redfish, and six other demersal fish species can be found at: http://www.imr.no/tokt/okosystemtokt_i_barentshavet/utbredelseskart/en. Abundance estimates are available for commercial species that are assessed routinely at the ICES AFWG. Figure 3.6.1 shows such biomass estimates for cod, haddock, and saithe (Pollachius virens) calculated in 2019. Saithe occurs mainly along the Norwegian coast and along the southern coast of the Barents Sea; few occur farther offshore in the Barents Sea itself. Total biomass of these three species peaked in 2010-2013 and has declined since; but remains above the long-term average for the time series dating back to 1960. Greenland halibut and deepwater redfish (Sebastes mentella) are important commercial species with large parts of their distribution within the Barents Sea. Time-series of biomass estimates for deepwater redfish and Greenland halibut are much shorter than those for haddock, cod, and saithe. Other than these main commercial stocks, long rough dab is the demersal stock with the highest biomass. Overall, cod is the dominant demersal species.
Cod
Young of the year
Estimated abundance of 0-group cod varied from 325 million in 1981 to 614,744 million individuals in 2014 with a long-term average of 139,460 million individuals for the 1980-2019 period (Figure 3.6.2). In 2018, the total abundance index for 0-group cod was not estimated due to lack of coverage. In 2019, the total abundance index for 0-group cod was 23,404 million individuals.
In 2019, the distribution of 0-group cod in the Barents Sea was covered well and abundance indices were estimated. The abundance index of 2019 year class is well below the long-term mean, and thus may be characterized as weak. 0-group cod were widely distributed on the surveyed area, except northern and south-eastern areas. The main dense concentrations were found in the South West area (Figure 3.6.3.). In 2019, 0-group cod was dominated by fish of 5 - 7.5 cm length. The largest cod (with an average length of 8.0 cm) were observed in the Central Bank, Svalbard South and Svalbard North areas, while smallest cod (with an average length of 5.1 cm) were found in the North East.
Cod one year old and older
The northeast Arctic cod stock is currently in good condition, with high total stock size, and high spawning-stock biomass (Figure 3.6.4). Strong 2004- and 2005-year classes were estimated as average at age 3 (Figure 3.6.5). 0-group abundance has been very high in the beginning of the last decade (2011–2014); but this has not resulted in strong year classes, as seen from the updated stock-recruitment plot shown in Figure 3.6.6.
Strong 2004- and 2005-year classes have, together with a low fishing mortality, led to rebuilding of the cod stock’s age structure to that observed in the late 1940s (Figure 3.6.7).
Cod expanded the area occupied during the period, as seen from the average distribution for three periods (2004-2009, 2010-2014, and 2015-2019, Figure 3.6.8). Higher catches of cod were distributed over larger area during the 2004-2009 period, while distribution was limited in the north and northeast Barents Sea. During the 2010-2014 period, higher catches of cod were observed mainly in the north and southeast, while their distribution extended northward and slightly north-eastward. Occupation of larger areas and redistribution of higher catches was most likely influenced by record high stock sizes, dominated by larger and older fish. During the 2015-2019 period, smaller catches of cod were taken in the northern and eastern areas compared to the 2010-2014 period, and the northern limit of the distribution in the area between Spitsbergen and Frans Josef Land was shifted southwards from 2017 to 2019. Since 2004, ice free areas have generally increased in the northern Barents Sea, increasing areas of suitable habitat for cod and allowing record high production. However, a notable decrease in ice-free areas was observed in the winter survey 2019 compared to previous winter surveys, and preliminary reports from the 2020 winter survey indicate a further decrease in 2020.
Figure 3.6.9 shows the distribution of cod ≥50cm based on data from the winter survey (January-March during 2008, 2011, and 2019. Note: the survey area was extended northwards in 2014 and coverage is often limited by ice conditions. Cod distribution observed during this survey increased throughout the period, but it is unknown when cod began to inhabit areas north of Bear Island and west of Svalbard during winter.
Figure 3.6.9. Distribution of cod ≥50 cm during winter 2008, 2011, and 2019.
NEA haddock
Young of the year
Estimated abundance of 0-group haddock varied from 696 million in 1989 to 98,745 million individuals in 2005 with a long-term average of 13,440 million individuals for the 1980-2019 period (Figure 3.6.11). In 2019, the total abundance estimates for 0-group haddock were 892 million, that it is one of the lowest values observed in the time series. Thus the 2019-year class may be characterized as very weak.
In 2019, 0-group haddock in the Barents Sea was covered well, and spatial indices were estimated for all regions. 0-group haddock were distributed mainly in western regions (Svalbard South and Bear Island Trench, Figure 3.6.12). Haddock length varied from 2.5 to 13.5 cm, while the length distribution was dominated by haddock of 8.5-10.5 cm length. The smallest haddock were found in South West, while the largest was found in the Great Bank area.
Haddock one year old and older
The Northeast Arctic haddock stock reached record high levels in 2009–2013, due to very strong 2004-2006-year classes. Subsequent recruitment has normalized; the stock remains at a relatively high level but has declined in recent years. Forecasts based on survey indices indicate that the abundant 2016- and 2017-year classes may increase stock size rapidly in future years if survival is good. (Figures 3.6.13 and 3.6.14). The large spawning stock did not, until 2016, result in strong year classes (Figure 3.6.15).
Occurrence of the very strong 2004-2006-year classes led to higher catches in the western and coastal areas. During the last two periods (2010-2014 and 2015-2019) haddock was distributed in the same areas but in much lower amounts (Figure 3.6.16).
Figure 3.6.17 shows the distribution of haddock ≥ 50cm based on winter survey data (January-March) from 2008, 2011, and 2019. Note that the survey area was extended northwards in 2014 and that coverage often is limited by ice extent. Haddock distribution observed during this survey increased during this period, but when haddock began to inhabit areas north of Bear Island and west of Svalbard during winter is unknown.
Figure 3.6.17. Distribution of haddock larger than 50 cm during winter 2008, 2011, and 2019.
Long rough dab
Young of the year
No abundance index for 0-group fish is available for 2018 due to a lack of survey coverage. Figure 3.6.18 shows the time series for the 1980-2017 period.
Older long rough dab
Older long rough dab (age 1+) are widely distributed in the Barents Sea. Long rough dab abundance estimates based on results from the BESS time-series (August–September) have been relatively stable during the current decade. Many small fish were observed in trawl catches especially in eastern areas during the 2015-2017 BESS. The 2018 index was not calculated due to limited survey coverage in the eastern region of the Barents Sea and in 2019 index estimated abundance somewhat above mean for period 2004-2017. (Figure 3.6.19).
Previously during the Russian Autumn-Winter Survey (October-December) major concentrations of long rough dab in the central, northern, and eastern areas were found. The catch-per-unit-effort index (CPUE) from this survey was calculated as number of specimens caught per 1 hour of trawling. For period 1982-2015 the index ranged from 30 to 120, amounting to 90 specimens per 1 hour of trawling on average. In 2017 values twice as high as the long-term average were found as the survey was performed in a limited area where the main concentration of young long rough dab occurred. Excluding areas with low fish concentrations in calculations can lead to overestimates in this index (Figure 3.6.20). It is difficult to track trends with this index, because in 2016 and in 2018 -2019 the survey was not performed.
Greenland hlibut
young of the year
The 2018 index for 0-group fish is not available due to lack of survey coverage
Older Greenland halibut
The adult component of the stock was, as usual, mainly distributed outside the ecosystem survey area, i.e. on the slope. The abundance on the slope has decreased in recent years (Fig 3.6.21). In recent years, however, an increasing number of large Greenland halibut has been captured in deeper waters of the area surveyed by the BESS (Figure 3.6.22). Northern and north-eastern areas of the Barents Sea serve as nursery grounds for the stock. Greenland halibut are also relatively abundant in deep channels running between the shallowest fishing banks. The fishable component of the stock (length ≥45 cm) increased from 1992 to 2012 and has remained stable since that time (Figure 3.6.23). The harvest rate has been low and relatively stable since 1992.
Beaked (deepwater) redfish (S. mentella)
Young of the year
Estimated abundance of 0-group deepwater redfish varied from 9 million individuals in 2001 to 191,145 million in 2007 with an average of 53,355 million individuals for the 1980-2019 period (Figure 3.6.24). In 2019, the total abundance index for 0-group deepwater redfish were 91,065 million individuals, which is higher than the long-term mean. Thus the 2019-year class may be characterized as close to strong.
In 2019, 0-group deepwater redfish were distributed mainly in regions of Svalbard (Svalbard South and Bear Island Trench, Figure 3.6.25). The deepwater redfish were 3.9 cm long (on average). The largest fish with average length 4.6 cm were observed in Svalbard North, while smallest with an average of 2.1 cm in the South West.
Beaked redfish one year old and older
In 2019, deepwater redfish were widely distributed in the Barents Sea. During the BESS and the winter survey, the largest concentrations were observed, as usual, in western and north western parts of the Barents Sea. Biomass was higher during 2013–2019 than in preceding years. Geographic distribution of deepwater redfish during the 2019 BESS is shown in Figure 3.6.26. The area of coverage for redfish during BESS 2019 was complete in the north and east. Most of the adult fish are observed in the Norwegian Sea. Stock development trends from the latest ICES AFWG assessment are shown in Figure 3.6.27. During the last decade the deepwater redfish total stock biomass has remained relatively stable around 1 million tonnes. From 1992 to 2002, there was an increase in the total stock, then, from 2003 to 2011, its stabilization, and in 2012-2018 - further growth, which has slowed in the last 3 years. Spawning stock increased in the period from 1992 to 2007, then it declined until 2013. Over the past 5 years, the biomass of spawning stock has stabilized. The decrease in spawning stock was due to poor year-classes of 1996-2003. Year classes of 2011-2016 were estimated as below average, but above the poor year-classes of 1996-2003.
Figure 3.6.26. Geographic distribution of deepwater redfish during the 2019 BESS survey.